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Here u is the component of the velocity field in the
x-direction and v the component in the y-direction. FromIn this paper we consider the time evolution of vortices simulated

by the method of contour dynamics. Special attention is being paid this we can see that we are dealing with a Hamiltonian
to the Hamiltonian character of the governing equations and in system with Hamiltonian 2c. A very important property
particular to the conservational properties of numerical time integra- of such a system is the concept of preservation of area (see
tion for them. We assess symplectic and nonsymplectic schemes.

[10]) which in our case is equivalent to conservation ofFor the former methods, we give an implementation which is both
mass. Operators which have this property, are called sym-efficient and yet effectively explicit. A number of numerical exam-
plectic. The solution operator of a Hamiltonian system isples sustain the analysis and demonstrate the usefulness of the

approach. Q 1997 Academic Press thus a symplectic operator. Since we like to solve this
Hamiltonian system numerically, it is important, especially
for long-time calculations, to preserve the area. This is

1. INTRODUCTION possible if a so-called symplectic integration scheme is used
(see [10]).

In this paper we will discuss some aspects of the contour In contour dynamics, we are in fact dealing with two
dynamics method, in particular the time integration. This types of discretizations, viz. one in space and one in time.
well-known method is a useful tool for simulating vortices In this paper, we will show that the spatially discretized
in two-dimensional flows of an incompressible, inviscid problem is also a Hamiltonian system, and therefore a
fluid. The method and many improvements thereof, has symplectic time integration scheme is to be preferred to
been brought to full growth by the pioneering work of ordinary integration methods. Furthermore we shall out-
Dritschel [1, 2]. Contour dynamics is based on the idea line how such a scheme can be applied to the contour
that the evolution of a patch of uniform vorticity is fully dynamics method and we show some results.
determined by the evolution of its boundary contour. The
method is not limited to just one region of uniform vortic-

2. THE GOVERNING EQUATIONSity; indeed, several contours can be nested in order to
obtain an approximation of a patch of distributed vorticity

The vorticity vector v is defined as the curl of the veloc-(see [1, 2, 12]).
ity field u. Since we consider a two-dimensional flow inTwo-dimensional flows of an incompressible, inviscid
the (x, y)-plane, this vorticity vector points in a directionfluid can be described by Euler’s equation, which expresses
perpendicular to the (x, y)-plane; so we can writebalance of linear momentum, and the continuity equation,

which expresses conservation of mass. Regarding the latter
conservation law we remark that, for an incompressible v 5 gez .
fluid, the velocity field is divergence free and thus, a stream
function c can be introduced in the usual way

By defining the stream function as in (1) and taking the
curl of the linear momentum equation, we obtain the vor-
ticity equation

ẋ(t) 5 u(x, y, t) 5
c(x, y, t)

y
,

(1)

ẏ(t) 5 v(x, y, t) 5 2
c(x, y, t)
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5 0, (2)
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where gm is the jump of vorticity when crossing the contour
Cm(t) outward. Note that this system of equations is also
Hamiltonian, with Hamiltonian 2 c̃.

3. SPATIAL DISCRETIZATION

3.1. Discretization of the Contours

From (4), we see that the velocity ũ at any point of the
two-dimensional plane is determined by a sum of contour
integrals. To calculate these contour integrals numerically,
we discretize each contour Cm into a finite but adjustable
number of nodes N (N, of course, depends on m and also
on time t). Between two adjacent nodes, the contours areFIG. 1. A cross section of the continuous vorticity profile and the
approximated by so-called elements. These elements can,piecewise constant vorticity profile.

e.g., be linear (in this case, the two adjacent nodes are
simply connected by a straight line segment), or quadratic,
cubic, etc. The parameterisation xn(j) of an element enwhich expresses conservation of vorticity of a fluid particle. with nodes xn and xn11 , is chosen such that xn(21) 5 xn ,

Furthermore, a relation between g and c can be derived xn(1) 5 xn11 and xN(1) 5 x1(21). In the case of linear
from their definitions elements, this parameterisation is given by

=2c 5 2g. (3)
xn(j) 5 As(1 2 j)xn 1 As(1 1 j)xn11 . (5)

By solving (3) using Green’s function, we find an expres-
sion for c The interpolated version of contour Cm will be called Ĉm .

The velocity û :5 (û, v̂)T at a point x anywhere in the
flow field of the spatially discretized problem is thenc(x, t) 5 2 EE

R2

G(x; x9)g(x9, t) dx9 dy9, t $ 0,
given by

where x :5 (x, y)T and G(x; x9) :5 (1/2f) ln ix 2 x9i is
û(x, t) 5 2 OM

m51

gm

2f
R

Ĉm(t)
ln ix 2 x9i dx9

(6)
Green’s function in two dimensions. The norm i ? i is de-
fined by ixi :5 Ïx2 1 y2 for each x [ R2.

The initial continuous vorticity distribution g is now
5 2 OM

m51

gm

2f ON
n51

E1

21
ln ix 2 xn(j)i ẋn(j) dj.replaced by a piecewise constant distribution g̃ like in Fig.

1. This is not a severe limitation of the method, as shown
by Legras and Dritschel in [7], where comparisons between
piecewise constant and continuous distributions are pre-
sented. Conservation of vorticity of a fluid particle now
ensures that the distribution remains piecewise constant
throughout time. For c̃ we then find

c̃(x, t) :5 2 OM
m51

gm EE
Gm(t)

G(x; x9) dx9 dy9, t $ 0,

where the Gm(t) are the regions of uniform vorticity gm

at time t (see, e.g., Fig. 2).
By applying Stokes’ theorem for a scalar field, we can

derive an expression for the velocity field,

FIG. 2. An arbitrary patch of piecewise constant vorticity distribution.ũ(x, t) 5 2 OM
m51

gm R
Cm(t)

G(x; x9) dx9, (4)
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Note that here the overdot denotes a j-derivation. In all where
numerical examples, we shall use linear elements. Of
course, higher order interpolation gives better results with f (x, xn(j)) :5 (x 2 xn(j)) arctan Sy 2 yn(j)

x 2 xn(j)Drespect to contour shapes (see [2]); however, since we are
mainly interested in the behaviour of the area as a result

2 (y 2 yn(j)) ln ix 2 xn(j)i,of the time integration, linear elements are adequate here.
The integrals in (6) along the elements can be determined

g(x, xn(j)) :5 2(y 2 yn(j)) arctan Sx 2 xn(j)
y 2 yn(j)Dusing Gaussian quadrature. Only when x is equal to (or

lying close to) one of the element nodes, an analytical
solution of this integral is used; this is needed because the 1 (x 2 xn(j)) ln ix 2 xn(j)i.
logarithm is (almost) singular in that case.

If we use linear elements for the interpolation of theWe will now prove the following property:
contours and use hn to denote the length of element en ,

PROPERTY 3.1. The velocity field û of the spatially dis- we find the following property for the discretization error.
cretized problem is divergence-free.

PROPERTY 3.2. If hmax is defined as the maximum of all
hn , thenProof. The partial derivatives of the velocity field are

given by
iũ 2 ûi 5 IOM

m51

g
2f

R
Ĉm2Cm

ln ix 2 x9i dx9I5 O(h2
max ).

û
x

5 2 OM
m51

gm

2f ON
n51

E1

21

(x 2 xn(j))ẋn(j)
ix 2 xn(j)i2 dj, Here, the integration over the difference of the two contours

Ĉm and Cm is defined as the difference of the integration
over Ĉm and over Cm .v̂

y
5 2 OM

m51

gm

2f ON
n51

E1

21

(y 2 yn(j))ẏn(j)
ix 2 xn(j)i2 dj.

Proof. For the sake of simplicity, only the situation of
one contour C is considered. However, the more general
case (with more than one contour) can be treated in theSo, for the divergence we find
same way. We assume that the nodes xn of contour Ĉ are
lying on the exact contour C. Then we find

(=, û) 5
û
x

1
v̂
y

5 2 OM
m51

gm

2f ON
n51

E1

21 ũ 2 û 5
g
2f

E
Ĉ2C

ln ix 2 x9i dx9

((x 2 xn(j))ẋn(j) 1 (y 2 yn(j)) ẏn(j))
ix 2 xn(j)i2 dj

5
g
2f ON

n51
R

en2Cn

ln ix 2 x9i dx9,

5 OM
m51

gm

2f ON
n51

E1

21
d ln ix 2 xn(j)i where en is the straight line segment (with length hn) con-

necting two adjacent nodes xn and xn11 and Cn is the part
of contour C that connects these points also (see Fig. 3).

5 OM
m51

gm

2f ON
n51

[ln ix 2 xn(1)i 2 ln ix 2 xn(21)i]

5 0,

since xn(1) 5 xn11(21) for all n, 1 # n , N, and xN(1) 5
x1(21). This even holds when x is equal to one of the
nodes on the contour.

From this theorem it follows that the spatially discretized
problem also has a Hamiltonian; it is given by

ĉ(x) 5 OM
m51

gm

4f ON
n51

E1

21
[ f(x, xn(j))ẋn(j)

(7)
1 g(x, xn(j))ẏn(j)] dj, FIG. 3. The region An enclosed by en and Cn .
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and similarly for the y-component

u(dn , ey)u # Ew2

w1

uR2(w) 2 R1(w)u ucos(w)u dw
(pp)

# (w2 2 w1) max
w1#w#w2

uR2(w) 2 R1(w)u.

Because of the linear interpolation, we have uR2(w) 2
R1(w)u # Ch2

n for w1 # w # w2 .
Furthermore, we can derive an expression for the angle

q :5 w2 2 w1 . If we define r by r :5 ix 2 As(xn 1 xn11)i, then

ix 2 xni2 5 r2 1 hnr cos(q1) 1 Afh2
n ,

FIG. 4. The situation of Fig. 3 in polar coordinates.
ix 2 xn11i2 5 r2 2 hnr cos(q1) 1 Afh2

n ,

where u1 is the angle between x 2 As(xn 1 xn11) and As(xn11 2
We now consider the contribution vector dn of one contour xn). For the inner product (x 2 xn, x 2 xn11) we simply have
en 2 Cn (i.e., the ‘‘local geometrical error’’) to the discreti-
zation error. We use Stokes’ theorem for a vector field to (x 2 xn , x 2 xn11) 5 r2 2 Afh2

n .
obtain a surface integral over An (see Fig. 3) from the
contour integral and find

Since

dn :5 R
en2Cn

ln ix 2 x9i dx9 cos(q) 5
(x 2 xn , x 2 xn11)
ix 2 xni ix 2 xn11i

,

5 EE
An

ez 3 =x ln ix 2 x9i dx9 dy9
we find after some calculation that

sin2(q) 5 1 2 cos2(q)
5 EE

An

S y 2 y9

ix 2 x9i2 ex 2
x 2 x9

ix 2 x9i2 eyD dx9 dy9.

5
(hn /r)2 sin2(q1)

1 2 As(hn /r)2 cos(2q1) 1 ahA (hn /r)4 .

We now introduce polar coordinates in the following way:
For r . hn , we find from this that q 5 O(hn /r).

Using this result in (*) and (**), we have
x 2 x9 :5 r cos(w),

y 2 y9 :5 r sin(w).
idni 5 HO(h3

n /r),

O(h2
n),

if r . hn ,

if r # hn .
Then, the surface integral becomes

Now, by combining the contributions from all regions
An and by assuming that only few elements en are lying

dn 5 Ew2

w1
ER2(w)

R1(w)
(sin(w)ex 2 cos(w)ey) dw dr. close (i.e., closer then hn) to the point x, we may conclude

that the overall discretization error is O(h2
max ), where hmax

is the maximum element length on contour Ĉ. This com-
Here w1 , w2 , R1(w), and R2(w) are as in Fig. 4. For the x- pletes the proof.
component we thus find

Note that this type of discretization error is not necessarily
made every time step during the calculations. The first
time this error is made when the initial contour grid isu(dn , ex)u # Ew2

w1

uR2(w) 2 R1(w)u usin(w)u dw
(p) calculated. After that, such spatial errors only occur when

nodes are added or removed; if this is done properly the# (w2 2 w1) max
w1#w#w2

uR2(w) 2 R1(w)u,
errors might be smaller.
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high in order to approximate the contour well enough.
This can be formulated as follows: if hn is the length of
element en , and k(xn) is the local curvature at node xn ,
then a node has to be added between xn and xn11 if

As(uk(xn)u 1 uk(xn11)u)hn . d1 ,

and node xn has to be removed if

As(uk(xn)u 1 uk(xn11)u)hn , d2 ,

where d1 and d2 are given and d1 . d2 . Furthermore, we
require the element length to become not smaller than a
minimum hmin and not larger than a maximum hmax . The
former requirement is made because we want to control
the number of nodes on a contour in view of the CPU-
time. The latter requirement is made to prevent the ele-FIG. 5. A small-scale feature encountering a large-scale one (from

[1, 2]). ment length to become too large at filaments (where the
curvature is very low at some places). The last condition
the node distribution is required to satisfy, is that of quasi-
uniformity. This can be formulated as

3.2. Node Distribution

Since, in general, the shape of the contours becomes hn21

K
# hn # Khn21 ,increasingly complex when time proceeds, the number of

nodes initially placed on the contours, will not be enough
to approximate the contours nicely at later time points. where K is a constant sufficiently larger than 1, which
Therefore, the number of nodes on a contour may change ensures that the element length of two neighboring ele-
during the calculations. ments is not changing too much. This is essential, since

Several situations may occur where one has to add nodes the local curvature, which depends on three successive
to, or remove nodes from, a contour. In general problems nodes, cannot be calculated very accurately otherwise.
may arise when a small scale feature with a high density
of nodes, encounters a larger scale feature with a lower
node density (see Fig. 5). In this case, the two parts of the
contours may intersect, unless nodes are added properly
to the large scale feature. To prevent this intersection of
two (parts of) contours, the following technique is imple-
mented: we say a node xi is lying opposite to an element
en with nodes xn and xn11 , if the line through xi , perpendicu-
lar to the line l through xn and xn11 (see Fig. 6) intersects
l in between xn and xx11 . When no nodes are added between
xn and xn11 and the local curvature at xi is higher than the
curvature at xn or xn11 , such a point xi may cause trouble.
This can be avoided by properly adding a node between
xn and xn11 each time the distance between the node and
the element is becoming smaller than a given critical value.
This distance is defined through the length of the vector
v (see Fig. 6). It is also possible that oppositely situated
points do not cause trouble and are even such that the
local curvature is low enough to allow some nodes to be
removed (for example, on a filament); here, the local curva-
ture is found from differentiation of a quadratic polynomial
through three consecutive points. Alternatively, nodes may

FIG. 6. Node xi is lying opposite to en .have to be added at places where the local curvature is
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All together, we have four criteria for adding nodes and by the following simple example. Consider the time evolu-
tion of a circular vortex patch (initial radius equal to r(0))three for removing. It is obvious that the actual removal
of uniform vorticity g. The velocity field inside the patchof nodes is very simple. For adding a node, however, one
and on its boundary, is clearly given by (see [6])has to decide where the new node has to be placed. To this

end, we fit a quadratic polynomial through three successive
nodes and place the new node on this polynomial. The
velocity at the new node is also determined by quadratic
interpolation. Here, the quasi-uniformity of the nodes also

u(x) 5 ẋ 5 2
g
2

y,

v(x) 5 ẏ 5
g
2

x,

t . 0, ixi # 1, (9)
is of importance for accuracy.

In the numerical examples in this paper, no surgery (see
[1]) is applied. This is because we focus on the time integra-
tion part of the method. Surgery would, of course, improve By applying the Euler forward scheme to (9), we find
the method, especially in case of complex long time calcula-
tions.

Sx(t)

y(t)
D5 1

1

gDt
2

2
gDt

2

1
2 Sx(t 2 Dt)

y(t 2 Dt)
D,

4. TIME INTEGRATION

As we can see from (6), the velocity field û depends on
the position of every node on every contour. Let X(t) be where Dt is the time step. For the length r(t) of the vector
the vector of x- and y-coordinates of all nodes at a certain x after t/Dt time steps, we thus find
time t,

r 2(t) 5 x2(t) 1 y2(t)
X(t) :5 (x1(t), x2(t), ..., xN (t), y1(t), y2(t), ..., yN(t))T.

5 S1 1 SgDt
2 D2D (x2(t 2 Dt) 1 y2(t 2 Dt))

Denote the velocity in the x-direction at node xn by ûn(X)
(:5 û(xn)) and in the y-direction by v̂n(X) (:5 v̂(xn)). Fur-

5 S1 1 SgDt
2 D2Dt/Dt

r 2(0)thermore, let U be the vector of velocities in x- and y-direc-
tions:

5 r 2(0) exp StDt Sg
2D2

1 O StDt3 Sg
2D4DD.

U(X) :5 (û1(X), û2(X), ..., ûN (X), v̂1(X),

v̂2 (X), ..., v̂N (X))T.
The radius of the patch thus grows exponentially with time
(see Fig. 7, where we used g 5 2f and Dt 5 0.05). Since

For the time evolution of the contours, we now have to
solve the following initial value problem:

Ẋ 5 U(X), t . 0,
(8)

X(0) 5 X0 .

4.1. Symplectic and Nonsymplectic Runge–Kutta Methods

As we have pointed out in Section 3.1, the spatially
discretized problem, of which we want to know the time
evolution, is Hamiltonian. This means that the solution
operator is symplectic (see [10]). In a numerical time inte-
gration, this solution operator is replaced by an approxi-
mate one. If we wish the latter to retain the Hamiltonian
character of the former, we should insist that the approxi-
mate solution operator is symplectic as well. However, FIG. 7. The evolution of a circular patch (initial radius equal to 1)
most standard numerical integrators replace the solution of uniform vorticity (g 5 2f) using the Euler forward scheme with

Dt 5 0.05.operator by a nonsymplectic mapping. This is illustrated
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In Fig. 9 we have plotted both the predicted and the numer-
ically obtained values of DA as a function of time for the
same problem as before (circular vortex patch). Here we
omitted taking the absolute value of (A(t) 2 A(0))/A(0)
in order to show the decrease of the area. Again, the results
agree remarkably well with the theory. Although the varia-
tion of the area is much smaller in this case, compared to
the Euler forward scheme, it still can be of significant
importance for large time intervals or problems with larger
values of a.

Next, we will pay attention to a second-order symplectic
Runge–Kutta (RK) scheme, the midpoint rule.

FIG. 8. The predicted behaviour of DA and the numerically obtained 4.2. Implementation of the Symplectic Midpoint Rule
DA as a function of time t. The area of the patch is calculated each time
step using a contour integral expression. Symplectic RK-methods are implicit, in general (see

[10]). Therefore, the implementation of a symplectic
method can be rather complex. If the problem were stiff,
Newton-like iteration methods would be needed to solve

the patch remains circular for all time, we find for the area the linear systems involved. In our case, however, these
A(t) of the patch after t/Dt time steps systems normally are not stiff. Indeed, in order to follow

the contour properly, we have to resolve regions which
are moving relatively fast at all steps (probably at differentA(t) 5 fr 2(t)
places during the evolution); i.e., the ‘‘smaller’’ time scales
dictate the step size at any time. Therefore, we can use a

5 fr 2(0) exp StDt Sg
2D2

1 O StDt3 Sg
2D4DD.

(10)

predictor–corrector scheme (P(EC)IE) for the implementa-
tion of the symplectic scheme. This means that the method
will be explicit after all, but conservation can be achieved

The interesting feature here is that by choosing I large enough. For this scheme, we shall
choose the midpoint rule (which is only second order), but
a similar implementation can be used for higher orderA(t) p A(0) exp(ta2Dt), (11)
symplectic methods.

Denote the vector of approximate x- and y-coordinates
where a 5 g/2; i.e., it becomes unbounded as t R y, of the positions of the nodes after k time steps Dt by Xk .
although it can be kept close to A(0) on any finite interval Furthermore, denote the vector of approximate velocities
by choosing Dt small enough. In Fig. 8 we have plotted
DA :5 uA(t) 2 A(0)u/A(0) versus time t (where the area
A(t) was calculated at each time step by a contour integral
expression) and also the behaviour of DA (predicted by
(11)). Clearly, (11) predicts the behaviour of the area very
well. Furthermore, it may be clear that the Euler forward
scheme is not symplectic and one may be forced to take
many steps to stay close to conservation. In fact, this applies
to any explicit method. Note that if we would apply the
Euler backward scheme to this problem (although this
would hardly be feasible in practice, since implementation
would require the solution of a large linear system), we
would find shrinking patches instead. For higher order
(explicit) RK-schemes, a similar result applies, albeit with
a more moderate growth. In particular, for the classical
explicit fourth-order RK-method (see [3, 4]), one finds by
straightforward expansion

FIG. 9. Similar to Fig. 8 but for RK4 and DA :5 (A(t) 2 A(0))/A(0)
(not the absolute value). Note the decrease of the area in this case.A(t) p A(0) exp(2ta6Dt5/72). (12)
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in x- and y-direction by U(Xk). Then the midpoint rule
can be represented as

Xk11 5 Xk 1 DtU SXk 1 Xk11

2 D,

or

Xk 1 Xk11

2
5 Xk 1

Dt
2

U SXk 1 Xk11

2 D.

Introducing vector
FIG. 10. The same problem as in Fig. 7; 14 cycles were needed to

reach machine precision.
X :5

Xk 1 Xk11

2
,

we apparently need to solve
all, and loss of its symplectic property. In order to obtain
an (almost) symplectic scheme, we therefore have to do
more cycles, basically until we have solved (13) withinX 5 Xk 1

Dt
2

U(X) (13)
machine precision (see Fig. 10).

One should realize, though, that each cycle requires the
for each time step. This is done by the following calculation of the velocity field, so this is very time consum-
(P(EC)IE) method: ing. To overcome this problem, we use an extrapolation

method to accelerate the convergence of the iteration pro-
cess. The method we actually used is the so-called minimal
polynomial extrapolation (MPE) method (see [11]). This
MPE method is very suitable for our problem, since it is
based on differences and does not need additional informa-

Predict: X0 5 Xk 1
Dt
2

U(Xk),

Evaluate: U(X i21 ),

Correct: X i 5 Xk 1
Dt
2

U(X i21 ),

Evaluate: U(2X I 2 Xk).

6 for i 5 1, ..., I,
tion about the Jacobian matrix. Before explaining the idea
of this method, we will prove the following property.

PROPERTY 4.1. For i $ 0,

The predictor step of this method is equivalent to the Euler
forward scheme for obtaining a first approximation to Xk11 . Xi 5 X 2 SDt

2 Di11

Ji U(X) 1 O(Dti12), (14)
At the last evaluation step (i.e., after I cycles), the velocities
at the (approximate) new positions

where J is the Jacobian matrix defined by
Xk11 :5 2XI 2 Xk ,

are calculated and used for the next time interval. J :5
U(X)

X
.

In general, the number of cycles to be performed de-
pends on both the order of the predictor scheme and the
order of the corrector scheme. If the corrector is of order Proof. The proof is by induction. For i 5 0, the result
p and the predictor of order q (p $ q), then the local follows immediately from (13) since
discretization error after i cycles, d(i), is

d (i) 5 O(Dt p) 1 O(Dt i1q). X0 5 Xk 5 X 2
Dt
2

U(X),

As far as standard accuracy arguments are concerned, we
would not need to do more than p 2 q 1 1 cycles; so in Assume the property holds for i. Then we find with (13),

the corrector part of the (P(EC)IE) scheme and a Taylorour case, two cycles would be enough. However, a finite
number of iterations implies an explicit integration, after expansion of U around X,
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Xi11 5 Xk 1
Dt
2

U(Xi)

5 Xk 1
Dt
2

U(X) 2 SDt
2 Di12

Ji11U(X) 1 O(Dti13)

5 X 2 SDt
2 Di12

Ji11U(X) 1 O(Dti13).

This completes the proof.

From this property it follows that
FIG. 12. The variation DA of the area as a function of time t. The

time step is taken to be Dt 5 0.05, the number of cycles is equal to 3
and MPE-extrapolation is performed.

Xi 2 X 5
Dt
2

J(Xi21 2 X) 1 O(Dti12) for i $ 1, (15)

Xi 2 Xi21 5
Dt
2

J(Xi21 2 Xi22) 1 O(Dti11) for i $ 2, (16) cients of the minimal polynomial P(l) of J with respect
to a1. We take I 2 1 to be the degree of P(l). Then, the
minimal polynomial can be written as

and the sequence hXij is linearly convergent. Since MPE
is based on differences, it will be convenient to have short P(l) 5 OI21

i50
c(i)li, c(I21) 5 1.

notations for these. We define

Let the vector c :5 (c(0), c(1), ..., c(I22))T be the vector of
ai :5 Xi 2 Xi21 for 1 # i # I, the unknown coefficients of the minimal polynomial. Then

c is the solution of the system of equations

and Ac 5 2aI21. (17)

In general, I will be much smaller than the number ofA :5 (a1, a2, ..., aI21).
nodes. Thus, the system (17) has more equations than
unknowns, but consistency can be proven (see [11]). Calcu-
lations of c requires only an LU-decomposition of A andNow MPE calculates the fixed point X as a weighted aver-
the solution of the upper triangular system, which is cheapage of the iterates with weights determined by the coeffi-
compared to the calculation of the velocities. Once the
vector c has been found, the fixed point can be calcu-
lated from

SOI21

i50
c(i)DX 5 OI21

i50
c(i)Xi11. (18)

Of course, we do not know the degree of the minimal
polynomial. But this is not a problem in practice. If I 2 1
is larger than the degree of P(l), then there is no problem
at all. If it is smaller, then instead of achieving equality in
(17), the least squares solution gives coefficients of an
‘‘almost annihilating’’ polynomial that is the ‘‘best’’ monic
polynomial of degree I 2 1 for eliminating the influence
of I 2 1 dominant components of the error (see [11]).
These dominant components of the error are generatedFIG. 11. The situation at t 5 0: the outer ring has vorticity g 5 f

and the region inside the inner circle has vorticity g 5 2f. by the absolutely largest eigenvalues.
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FIG. 13. (a) and (b) show the variation of the area DA calculated with the midpoint rule with 3 cycles, where the extrapolation part is split up
over the contours (MPREXC), with the midpoint rule with 3 cycles and global extrapolation (MPREX) and with a fourth-order RK-method (RK4).
(c) and (d) show the variation of the velocities DU for MPREXC and RK4. In all cases Dt 5 0.05.

Consider now a vortex patch consisting of two concentric up the extrapolation process over the contours; instead of
calculating one set of coefficients c(i) for the whole system,circular contours, where the outer contour rotates slower

than the inner (the fluid enclosed by the inner contour has a different set of coefficients is calculated for each contour
in order to obtain the dominating terms for each contour.a larger uniform vorticity than the fluid enclosed by the

outer and inner contours). Then the eigenvalues belonging We have implemented this, and the results for the same
vortex patch as in Fig. 11 are shown in Figs. 13a (outerto the outer contour are smaller (in an absolute sense)

than those of the inner one. So we might expect that, in contour) and 13b (inner contour). The results for both the
outer and the inner contours have improved. This is duethe case where I 2 1 is smaller than the degree of the

minimal polynomial, the area of the inner contour is better to the fact that larger g makes the extrapolation more
accurate (dominance of the eigenvalue is more pro-conserved than that of the outer contour. This is exactly

what happens in Figs. 11 and 12. Here the evolution of a nounced). In the next section we will show some more
results. In Fig. 13, also, results are shown of the evolutioncircular vortex patch with two contours has been calcu-

lated. The outer ring has vorticity g 5 f and the inner of the same vortex patch but now with the classical fourth-
order explicit RK method. The results are in agreementcircle has vorticity g 5 2f. So the outer contour has eigen-

values which are smaller (in absolute value) than those of with (12). It might be clear, that the results of the midpoint
rule are much better than those of the RK method. Thisthe inner. In Fig. 12 we see that the area enclosed by the

inner contour is better conserved than that of the outer, is while the same effort was needed for both methods;
we used I 5 3, so the velocities had to be calculated fouras expected. This suggests that it might be better to split
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TABLE I

The Number of Rotations at t 5 500 of Contour 1 and Contour 2
for the Three Different Integrators and the Exact Values

MPREXC MPREX RK4 Exact

Contour 1 169.6 169.6 169.8 170
Contour 2 249.3 249.3 249.8 250

times per time step which is the same as for the fourth-
order RK method. In addition, Fig. 13 contains two plots
(Figs. 13c and d), where the behaviour of the error FIG. 14. DA as a function of time t for the Kida-vortex.

DU in the velocities (which is defined as DU :5 u(U(t) 2
U(0))/U(0)u, where U(t) 5 on Ïû2

n 1 v̂ 2
n) as a function of

time is shown, both for RK4 and MPREXC. Apparently,
EXAMPLE 5.1. This example concerns the evolution of aMPREXC also gives better results with respect to the

so-called Kida-vortex (see [5]). Initially, an elliptical patch,velocities.
with aspect ratio equal to 0.75 and of uniform vorticityAnother error, the phase shift, may also be investigated
g 5 2f, is placed in the centre of a strain flow us , given by(although it is often less interesting in practical situations).

A way to do this is to follow the point on a contour which
initially is placed at the positive part of the x-axis. The

us 5 exsolution of the problem can be determined analytically,
and we find that such a point of the outer contour passes vs 5 2ey .
the positive x-axis exactly 170 times and that of the inner
one passes 250 times. For all numerical methods, this turns

Here, e is the strain rate which we have chosen to be e 5out to be slightly less than these analytical values, as can
0.5. In this case, the motion of the vortex is periodic: thebe seen in Table I. However, the differences between the
vortex rotates around its centre while it remains ellipticinvestigated methods are very small, so we may conclude
and the aspect ratio changes periodically with time. Wethat all numerical schemes produce a phase shift of compa-
calculated the evolution of the vortex three times: oncerable magnitude.
with the midpoint rule with 3 cycles (i.e., four calcula-
tions of the velocities per time step) and extrapolation5. FURTHER NUMERICAL RESULTS
(MPREXC:4), once with the fourth-order Runge–Kutta
method (RK4), and finally, once with the midpoint ruleIn the previous section, we have compared some numeri-
with 7 cycles (i.e., eight velocity calculations per time step)cal results obtained by the midpoint rule with a fourth-
and extrapolation (MPREXC:8). In Fig. 14, DA is plottedorder explicit RK method. However, that test problem
as a function of time t for all three calculations. We seewas rather simple. Therefore, we will consider two more

complex problems in this section. from this figure that MPREXC:4 conserves the area of the

FIG. 15. The evolution of a monopolar vortex into a tripolar vortex.
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FIG. 16. DA plotted as a function of time for contours 1 (outer contour), 2 and 3 (inner contours).

patch better than RK4 with the same effort. Furthermore, by the node redistribution, since for t , 6, MPREXC gives
better results. For the other two contours, MPREXC ap-we see that with more effort (e.g., 7 cycles), the area is

even better conserved. Note that again the behaviour of pears to be better on the entire time interval. This may be
very important for long-time integration, since the expan-the area of the patch using RK4 agrees with (12). Further-

more, we should remark that we forced the number of sion of the areas of the inner contours can affect the dynam-
ics of the whole vortex. Note that for long-time integration,nodes on the contour to be constant. Of course, the varia-

tion of the aspect ratio of the ellipse then causes a variation surgery is essential here.
of the area, but this is the same for all calculations. If we
had applied node redistribution, we would not have been 6. CONCLUSIONS
sure that the effect this had on the area would have been

In this paper, we have considered some aspects of thethe same for all calculations; this would have hampered
contour dynamics method. We focussed on the Hamilto-our assessment. We shall encounter a similar problem in
nian form of the spatially discretized problem and thethe next example.
consequences this has for the numerical time integration.

EXAMPLE 5.2. This example concerns the evolution of We have demonstrated that symplectic integration con-
a monopolar vortex into a tripolar vortex which is a vortex serves the area enclosed by a contour better than an ordi-
consisting of an elliptic core with two satellites with vortic- nary integration method. However, a problem with sym-
ity of opposite sign (see, e.g., [8, 9]). The initial configura- plectic integration schemes, is that they usually are implicit.
tion consists of three concentric slightly elliptically dis- This can make implementation rather difficult. Since, in
turbed contours (aspect ratio equals 0.95). The outer ring general, the system of equations of the contour dynamics
has negative vorticity, while the core (consisting of the method is not stiff, one may use a predictor–corrector
area enclosed by the second contour) has positive vorticity. scheme for the implementation. To obtain a symplectic
Due to the elliptical disturbance, the monopole deforms integrator this way, one should perform enough corector
and becomes a tripole. The evolution is shown in Fig. 15. steps, i.e., basically until machine precision is reached.
As we can see from this figure, the outer contour deforms However, every corrector step requires the calculation of
dramatically and this will have an influence on the area the velocities, which is rather time consuming. Therefore,
enclosed by the outer contour. Although the two inner we have chosen to use an extrapolation method to acceler-
contours deform much less, nodes are added here too (in ate the iteration process. The MPE method turns out to
regions where the curvature became larger) which also be very suitable for contour dynamics. It is based on the
effects the area enclosed. Since this node redistribution use of differences and does not need additional informa-
might be different for calculations with different time inte- tion about the Jacobian matrix of the system. Performing
grators (because of the growing or shrinking of the area the extrapolation for each of the contours separately, ap-
caused by the integrator), it is hard to compare the various pears to work even better in practice.
results. Nevertheless, we again have plotted DA for all
three contours as a function of time both for RK4 and for
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